Hacking Techniques & Intrusion
Detection

Ali Al-Shemery
(aka: B!In@ry)

arabnix at gmail dot com

All materials is licensed under a Creative Commons
“Share Alike” license.

* http://creativecommons.org/licenses/by-sa/3.0/
You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

Writing Basic Security Tools
using Python

Special lecture

>>> import antigravity

Cited [1]

"
/

7

\\\\\
i,

/

\ '
\

o

\Nw%

it
W)

i
Yy
7 \
\\\\\\\\ 1)

/W ¥/ 4
/; “@\\\\\\\‘ / \ / \\
\._\\ \\\\\\ / \\\\ Y,
/) M\\\
/, A
/

_\\\.‘T : m.NU. 7 &
W s “u”
Y \\\\\Rw Wi
GN.\\\\ \ Wg 7/

W
/)

)

.
.

)
/.

%)

/

NN

T
¥ Mwmw 3
mw/,ow0m,mw
Gy Sz¥%E
Abe gy s
“EE 8By 5t
<8
t— 0L
S o~y
g BEEgy U
“W?. WMRW&% Wm
\ JRWA%P
mr:v E%F.swu Wm
82 ° /
HA I(I.ﬁWkH
'HEE
£ ws
=& mw
LDag &3
//Nﬂ& X
mwm/mm
HZY® T.d

Outline

About Python
Python Basics
Types
Controls
Python Functions and Modules
Python Tips and Tricks
Coding for Penetration Testers

binary-zone.com

About Python

Python is an open source programming language.

Development started by Guido van Rossum in December
1989.

Conceived in the late 1980’s

Python 2.0 was release on October 16th, 2000

Python 3.0 was released on December 2008

Name came from TV series “Monty Python’ s Flying Circus .

binary-zone.com

About Python — Cont.

Python is cross platform
Linux (shipped out of the box)
Windows (easy to install)
\YETo
Even work on your Droid!

etc

binary-zone.com

Why Learn Python?

Lot of people always ask me “Why learn Python”?
The answer is simple:

Simple and easy to learn

Free and Open Source

Powerful high-level programming language

Widely used (Google, NASA, Yahoo, etc)

Portable

HUGE number of Extensive Libraries!

binary-zone.com

What is Python Good for?

|deal language for scripting and rapid application
development in many areas on most platforms.

All computer related subjects (IMO except system
programming)
Performing System Administration Tasks

Encouraging and Helping Children start programming

binary-zone.com

What About Security?

Extensive use in the information security industry

Exploit Development I1DON'T ALWAYS WRITE

Networking CODE THATNEEDS TO WORK
Debugging P

Encryption/Decription

Reverse Engineering
Fuzzing
Web

Forensics o ©

BUT WHEN DO, 1
WRITE IT IN PYTHON.

binary-zone.com Cited [2] 11

Malware analysis

Let’ s Start Working

Interactive Interpreter

:~# python
Python 2.7.3 (default, Jan 2 2013, 13:56:14)
[GCC 4.7.2] on linuxZ2

Type "help", "copyright", "credits" or "license" for more information.
>

Text Editors #!/usr/bin/python
Vim, Nano, # -*- coding: utf-8 -*--
Geany (was my favorite), # Code goes below
PyCharm (favorite),
Gedit, Kate,

Notepad++, etc

Python Basics

Integers (int)
>>> httpPort=80
>>> Subnet=24

Floating Point (float)
>>>5.2/2
2.6

Strings (str)

>>> url="http://www.linuxac.org/”

binary-zone.com

Playing with Strings

One of the most powerful capabilities of Python
String Slicing
>>> |logFile="/var/log/messages”
>>> |ogFile[0]
‘g
>>> |ogFile[1:4]
‘var’
>>> |ogFile[-8:]
'messages’
>>> |ogFile.split("/")

['', 'var', 'log', 'messages']

binary-zone.com

Playing with Strings — Cont.

String Concatenation
>>> userName = “ali”
>>> domainName = “ashemery.com”
>>> userEmail = userName + “@” + domainName
>>> userEmail

‘ali@ashemery.com’

>>> website="http://www.ashemery.com/"
>>> param="?p=123"

>>> url ="".join([website,param])
>>> url

'http://www.ashemery.com/?p=123'

binary-zone.com

Python Lists

Python lists are very useful when you have a collection of
elements
>>> portlist = [21,22,25,80]
>>> portList[0]
21

>>> portList.insert(1,22)
>>> portList

[21, 22, 25, 80, 443]

>>> portList.append(443) >>> portList = []
>>> portlList

[]

>>> portList.remove(22) Lists in Python can be of any
>>> portList mixed type, even list of

[21, 25, 80, 443] variables!!!

binary-zone.com

>>> portList
[21, 22, 25, 80, 443]

Python Controls -

IF, ELSE, and ELIF Statements
>>> pList = [21,22,25,80]
>>> if pList[0] == 21.:
print("FTP Service")
... elif pList[0] == 22:
print("SSH Service")
... else:

print("Unknown Service")

binary-zone.com

Decisions

Python doesn’ t use line
terminators (ex: semicolons),
but Python forces you to use
indents

Ensures writing elegant code!
17

Python Controls - Loops

For and While Statements
>>> for port in pList:
print "This is port : ", port

This is port : 21
This is port : 22
This is port : 25
This is port : 80

binary-zone.com

Python Tips and Tricks

Changing and checking data types
>>> httpPort=80
>>> httpPort
80
>>> type(httpPort)
<type 'int'>
>>> httpPort = str(httpPort)
>>> type(httpPort)
<type 'str'>
>>> httpPort
30’

binary-zone.com

Python Tips and Tricks — Cont.

Getting the length of an object
>>> |en(pList)
4

String formatting

>>> plList = [21,22,25,80]

>>> for member in pList:
print "This is port number %d" % member

This is port number 21
This is port number 22
This is port number 25
This is port number 80

binary-zone.com

Python Tips and Tricks — Cont.

Another String formatting example
>>>ip="192.168.1.1"
>>>mac = "AA:BB:CC:DD:EE:FF"

>>> print "The gateway has the following IP: %s and MAC: %s addresses" %
(ip, mac)

The gateway has the following IP: 192.168.1.1 and MAC: AA:BB:CC:DD:EE:FF
addresses

binary-zone.com

Python Tips and Tricks — Cont.

Working with ASCII codes
>>>x = "\x41"
>>> print x
A

Converting to Hexadecimals
>>> hex(255)
'Oxff’
>>> hex(0)
'0x0'
>>> hex(10)
'Oxa’
>>> hex(15)
'Oxf'

binary-zone.com

Python User Input

Python can handle user input from different sources:
Directly from the user
From Files

From GUI (not covered in this lecture)

binary-zone.com

Python User Input — Cont.

Directly from the user using raw_input

>>> userEmail = raw_input("Please enter your email address: ")

Please enter your email address: ali@ashemery.com

>>> userEmail
'ali@ashemery.com’

>>> type(userEmail)
<type 'str'>

binary-zone.com

Python User Input — Cont.

From Text Files
>>>f = open("./services.txt", "r")
>>> for line in f:

print line

HTTP 80

SSH 22
ETP 21 Other common file functions:

HTTPS 443 write

SMTP 25 read
POP 110 readline

>>> f.close()

binary-zone.com

Creating Functions

Whenever you need to repeat a block of code, functions
comes helpful

Creating a Python Function (syntax)

def fName(listOfArguments):
Linel
Line2

Line n

return something

binary-zone.com

Creating Functions — Cont.

Basic function to check for valid port numbers

def checkPortNumber(port):
if port > 65535 or port <0:
return False
else:
return True

Howto use the checkPortNumber function:
print checkPortNumber(80) = True
print checkPortNumber(66000) = False
print checkPortNumber(-1) = False

binary-zone.com

Working with Modules

Modules in Python are simply any file containing Python
statements!

Python is distributed with many modules

To use a module:
import module
import modulel, module2, moduleN

import module as newname
from module import *

from module import <specific>

binary-zone.com

Common Used Modules

The most commonly used modules with security coding are:
string, re

0s, sys, socket
hashlib

httplib, urllib2
Others? Please add ...

binary-zone.com

Modules and Examples

’

Module “sys’

Check Python path, and count them
import sys
print "path has", len(sys.path), "members”
print "The members are:”
for member in sys.path:

print member

Print all imported modules:

>>> print sys.modules.keys()

Print the platform type (linux, win32, mac, etc)
>>> print sys.platform

binary-zone.com

Module “sys — Cont.

Check application name, and list number of passed
arguments

import sys

print “The application name is:", sys.argv[0]

if len(sys.argv) > 1:
print “You passed", len(sys.argv)-1, "arguments. They are:"
for arg in sys.argv[1:]:
print arg
else:

I(l

print “No arguments passed

binary-zone.com

Module “sys — Cont.

Check the Python working version

>>> sys.version

binary-zone.com

Module “os”

import os

Check platform name (UNIX/Linux = posix, Windows = nt):

>>> 0S.name

Print the current working directory

>>> os.getcwd()

List files in specific directory
fList = os.listdir("/home")
for fin fList:

print f

binary-zone.com

Module “os” — Cont.

Remove a file (delete)

>>> o0s.remove(“file.txt")

Check the platform line terminator (Windows = ‘\r\n’, Linux
=\n’, Mac="\r")

>>> 0s.linesep

Get the effective UID for current user
>>> os.geteuid()

Check if file and check if directory
>>> os.path.isfile("/tmp")
>>> os.path.isdir("/tmp")

binary-zone.com

Module “os” — Cont.

Run a shell command
>>> 0s.system("ping -c 2 127.0.0.1")

Execute a command & return a file object
files = os.popen("ls -l /tmp")
foriin files:

printi

binary-zone.com

Module “os” — Cont.

os.system() # Executing a shell command

os.stat() # Get the status of a file

os.environ() # Get the users environment

os.chdir() # Move focus to a different directory
os.getcwd() # Returns the current working directory
os.getgid() # Return the real group id of the current process
os.getuid() # Return the current process’s user id

os.getpid() # Returns the real process ID of the current process
os.getlogin() # Return the name of the user logged

os.access() # Check read permissions

os.chmod() # Change the mode of path to the numeric mode
os.chown() # Change the owner and group id
os.umask(mask) # Set the current numeric umask

os.getsize() # Get the siz&"6f 3file"

Module “os” — Cont.

os.path.getmtime()
os.path.getatime()
os.environ()
os.uname()

os.chroot(path)

os.listdir(path)
os.getloadavg()

os.path.exists()
os.walk()

Last time a given directory was modified
Last time a given directory was accessed
Get the users environment

Return information about the current OS

Change the root directory of the current process
to path

List of the entries in the directory given by path

Show queue averaged over the last 1, 5, and 15
minutes

Check if a path exists
Print out all directories, sub-directories and files

binary-zone.com

Module “os” — Cont.

os.mkdir(path)

os.makedirs(path)
os.remove(path)
os.removedirs(path)
os.rename(src, dst)
os.rmdir(path)

Create a directory named path with
numeric mode mode

Recursive directory creation function
Remove (delete) the file path

Remove directories recursively

Rename the file or directory src to dst
Remove (delete) the directory path

binary-zone.com

Execute External Programs

Running external programs are very useful when you need to
do automation (like in scripts)

Execution could be categorized into:

Synchronous

Invokes the external commands and waits for the return

Asynchronous
Returns immediately and continue in the main thread

http://helloacm.com/execute-external-programs-the-python-ways/

binary-zone.com

Execute External Programs — Cont.

The easy was is to import the os module
Provides: popen(), system(), startfile()

>>> import os
>>> print os.popen("echo Hello, World!").read()

The os.popen() will treat the output (stdout, stderr) as file
object, so you can capture the output of the external
programs

binary-zone.com

Execute External Programs — Cont.

The os.system() is also synchronous, and could returns the
exit-status

>>> import os
>>> print os.system('notepad.exe’)

binary-zone.com

Execute External Programs — Cont.

By acting like double-click in the file explorer, you can use
os.startfile() to launch external program that is associated
with this file

This is an asynchronous method

>>> import os
>>> os.startfile('test.txt')

It will throw out an exception if file is not found

WindowsError: [Error 2] The system cannot find the file specified:

binary-zone.com

Execute External Programs — Cont.

If you install the win32api package (not shipped by default),
you can use the following asynchronous method:

import win32api
try:
win32api.WinExec('notepad.exe')
except:
pass

Windows platforms only.

binary-zone.com

Execute External Programs — Cont.

The subprocess package provides a syncrhonous and an
asynchronous methods namely call and Popen

Both methods take the first parameter as a list

import subprocess
subprocess.call(['notepad.exe’, 'abc.txt'])
subprocess.Popen(['notepad.exe'])

thread continues ...

p.terminate()

binary-zone.com

Execute External Programs — Cont.

You can use wait() to synchronous the processes

import subprocess

p = subprocess.Popen('ls’, shell=True, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)

for line in p.stdout.readlines():
print line
retval = p.wait()

print retval

binary-zone.com

Module “socket”

import socket

Creating a simple TCP client
Check simpleClient.py

Creating a simple TCP server

Check simpleServer.py

Create a malicious FTP Client
ftpClient.py

binary-zone.com

Module “socket” — Cont.

Create TCP Socket, then send and receive data from website
using the socket

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(("www.ashemery.com", 80))

s.send('GET / HTTP/1.1\r\nHost: www.ashemery.com\r\n\r\n')
data = s.recv(2048)

s.close()

print data

For UDP Sockets use SOCK_DGRAM instead of
SOCK_SEREAM. 48

Module “pcapy”

Pcapy is a Python extension module that interfaces with the
libpcap packet capture library.

Pcapy enables python scripts to capture packets on the
network.

Pcapy is highly effective when used in conjunction with a
packet-handling package such as Impacket, which is a
collection of Python classes for constructing and dissecting
network packets.

Packet Capturing using pcapy example
pcapyPktCapturel.py

pcapyExl.py
pcapyDumper.py

binary-zone.com

Module “urllib” & “urllib2”

urllib2 is a Python module for fetching URLs.

Offers a very simple interface, in the form of the urlopen
function.
Capable of fetching URLs using a variety of different
protocols (http, ftp, file, etc)
Also offers a slightly more complex interface for handling
common situations:

Basic authentication

Cookies

Proxies

etc

binary-zone.com

urllib vs urllib2

Both modules do URL request related stuff, but they have
different functionality.

urllib2 can accept a Request object to set the headers for a
URL request, urllib accepts only a URL.

urllib provides the urlencode method which is used for the
generation of GET query strings, urllib2 doesn't have such a
function.

Because of that urllib and urllib2 are often used together.

binary-zone.com

Examplel

import urllib2

request = urllib2.Request('http://www.ashemery.com')
response = urllib2.urlopen(request)

payload = response.read()

print(payload)

binary-zone.com

Basic URL Request

import urllib2

response = urllib2.urlopen('http://pythonforbeginners.com/')
print response.info()

htm| = response.read()

response.close()

binary-zone.com Cited [3]

Base64 & ROT13 Encoders

Base64

#!/usr/bin/python

code = raw_input("Enter the data you wish to be encoded to Base64")
answer=code.encode('base64','strict')

print answer

ROT13

#!/usr/bin/python

code = raw_input("Enter the data you wish to apply ROT13 on")
answer=code.encode(‘rot13','strict')

print answer

binary-zone.com Cited [24

Packet Crafting with Scapy

Scapy Overview

Scapy is a Python program that enables the user to send, sniff
and dissect and forge network packets

This capability allows construction of tools that can probe,
scan or attack networks

It can replace hping, arpspoof, arp-sk, arping, pOf and even
some parts of Nmap, tcpdump, and tshark

binary-zone.com

Scapy Overview - Cont.

Scapy was created by Philippe Biondi and runs in Python:
Can be used interactively at a Python prompt

Included within Python scripts for more complex interactions

Must run with root privileges to craft packets
Don’t need to be a Python Guru to use Scapy!

binary-zone.com

Scapy Basics - 1

Supported protocols:
>>> |s()

Details about a specific protocol:
>>> |s(TCP)

Available commands/functions:

>>> |sc()

binary-zone.com

Scapy Basics - 2

Crafting a SYN/ACK Packet
>>> pkt = IP(dst="192.168.122.101")
>>> pkt /= TCP(dport=80, flags="SA")

Crafting ICMP Host Unreachable Packet
>>> pkt = IP(dst="192.168.122.101")
>>> pkt /= ICMP(type=3,code=1)

binary-zone.com

Scapy Basics - 3

Single Line:
ICMP echo request Packet
>>> mypkt = IP(dst="192.168.122.101") /ICMP(code=0,type=38)

TCP FIN, Port 22, Random Source Port, and Random Seg#

>>> mypkt = IP(dst="192.168.122.101") /
TCP(dport=22,sport=RandShort(),seq=RandShort(),flags="F")

binary-zone.com

Sending and Receiving Packets — @L3

Send packet at layer 3
>>> send(packet)

Send packet at L3 and receive one response
>>>resp = srl(packet)

Send packet at L3 and receive all responses

>>> ans,unans = sr(packet)

binary-zone.com

Sending and Receiving Packets — @L2

Send packet at layer 2
>>> sendp(Ether()/packet)

Send packet at L2 and receive one response
>>>resp = srpl(packet)

Send packet at L2 and receive all responses

>>> ans,unans = srp(packet)

binary-zone.com

Displaying Packets

Get a summary of each packet:

>>> pkts.summary()

Get the whole packet list:
>>> pkts.show()

binary-zone.com

Scapy Host Discovery

>>> ans,unans = srp(Ether(dst="ff:ff.ff:ff.ff:ff")/
ARP(pdst="192.168.122.0/24"),timeout=2)

>>> ans.summary(lambda(s,r): r.sprintf("Ether: %Ether.src% \t\t
Host: %ARP.psrc%"))

binary-zone.com

Scapy Port Scanning

TCP SYN Scanner
>>> sr1(IP(dst="192.168.122.101") /TCP(dport=90,flags="S"))

>>> a,u = sr(IP(dst="192.168.122.101") /TCP(dport=(80,100),flags="S"))

>>> a.summary(lambda(s,r): r.sprintf("Port: %TCP.sport% \t\t Flags:
%TCP.flags%"))

binary-zone.com

Scapy Sniffing - 1

Scapy has powerful capabilities to capture and analyze
packets.

Configure the network interface to sniff packets from:
>>> conf.iface="eth0"

Configure the scapy sniffer to sniff only 20 packets
>>> pkts=sniff(count=20)

binary-zone.com

Scapy Sniffing - 2

Sniff packets and stop after a defined time:
>>> pkts=sniff(count=100,timeout=60)

Sniff only packets based on a filter:
>>> pkts = sniff(count=100,filter="tcp port 80")

binary-zone.com

Scapy Sniffing - 3

>>> pkts = sniff(count=10,prn=lambda x:x.sprintf("SrcIP={IP:
%IP.src% -> DestIP=%IP.dst%} | Payload={Raw:%Raw.load%

\l)

What is that doing ???

binary-zone.com

Exporting Packets

Sometimes it is very useful to save the captured packets in a
PCAP file for future work:

>>> wrpcap(“filel.cap", pkts)

Dumping packets in HEX format:
>>> hexdump(pkts)

Dump a single packet in HEX format:
>>> hexdump(pkts[2])

Convert a packet to hex string:
>>> str(pkts[2])

binary-zone.com

Importing Packets

To import from a PCAP file:
>>> pkts = rdpcap(“filel.cap")

Or use the scapy sniffer but with the offline argument:
>>> pkts2 = sniff(offline="filel.cap")

binary-zone.com

Create your own tools

>>> def handler(packet):
hexdump(packet.payload)

>>> sniff(count=20, prn=handler)

>>> def handler2(packet):
sendp(packet)

>>> sniff(count=20, prn=handler2)

binary-zone.com

#!/usr/bin/env python
import sys
from scapy.all import *

def findSYN(p): . .
flags = p.sprintf("%TCP.flags%") sniff(prn=findSYN)

if flags =="S": # Only respond to SYN Packets
ip = p[IP] # Received IP Packet

tcp = p[TCP] # Received TCP Segment
i=1P() # Outgoing IP Packet
i.dst =ip.src

i.src = ip.dst

t=TCP() # Outgoing TCP Segment
t.flags = "SA"

t.dport = tcp.sport

t.sport = tcp.dport

t.seq = tcp.ack

new_ack = tcp.seq + 1

print ("SYN/ACK sent to ",i.dst,":",t.dport)
send(i/t)

binary-zone.com

Others (not categorized yet!)

Adding Time Delay

Delay for 5 seconds
>>> import time
>>> time.sleep(5)

Run something once a minute:
import time
while True:

print "This prints once a minute.”
time.sleep(60)

binary-zone.com

Exploit Development

#!/usr/bin/python

import socket

host = “target”

port = <port#>

cmd = “initial command”

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
buffer = “buffer to send”

shellcode = “shellcode”

Payload = cmd + buffer + shellcode
print "\n Any status message \n”“
s.connect((host,port))

data = s.recv(1024)

s.send(payload +”\n")

s.close

binary-zone.com

Python Tools for Penetration
Testers

Network Tools

Scapy: send, sniff and dissect and forge network packets. Usable interactively or as a library
pypcap, Pcapy and pylibpcap: several different Python bindings for libpcap

libdnet: low-level networking routines, including interface lookup and Ethernet frame
transmission

dpkt: fast, simple packet creation/parsing, with definitions for the basic TCP/IP protocols

Impacket: craft and decode network packets. Includes support for higher-level protocols
such as NMB and SMB

pynids: libnids wrapper offering sniffing, IP defragmentation, TCP stream reassembly and
port scan detection

Dirtbags py-pcap: read pcap files without libpcap

flowgrep: grep through packet payloads using regular expressions
Knock Subdomain Scan, enumerate subdomains on a target domain through a wordlist

Mallory, extensible TCP/UDP man-in-the-middle proxy, supports modifying non-standard
protocols on the fly

Pytbull: flexible IDS/IPS testing framework (shipped with more than 300 tests)

binary-zone.com Cited [5]

Debugging and Reverse Engineering
Tools

Paimei: reverse engineering framework, includes PyDBG, PIDA, pGRAPH
Immunity Debugger: scriptable GUlI and command line debugger

mona.py: PyCommand for Immunity Debugger that replaces and
improves on pvefindaddr

IDAPython: IDA Pro plugin that integrates the Python programming
language, allowing scripts to run in IDA Pro

PyEMU: fully scriptable 1A-32 emulator, useful for malware analysis
pefile: read and work with Portable Executable (aka PE) files
pydasm: Python interface to the libdasm x86 disassembling library

binary-zone.com Cited [5] 78

Debugging and Reverse Engineering
Tools — Cont.

PyDbgEng: Python wrapper for the Microsoft Windows Debugging Engine

uhooker: intercept calls to API calls inside DLLs, and also arbitrary
addresses within the executable file in memory

diStorm: disassembler library for AMDG64, licensed under the BSD license
python-ptrace: debugger using ptrace (Linux, BSD and Darwin system call
to trace processes) written in Python

vdb / vtrace: vtrace is a cross-platform process debugging API
implemented in python, and vdb is a debugger which uses it

Androguard: reverse engineering and analysis of Android applications

binary-zone.com Cited [5] 79

Fuzzing Tools

Sulley: fuzzer development and fuzz testing framework consisting of
multiple extensible components

Peach Fuzzing Platform: extensible fuzzing framework for generation and
mutation based fuzzing (v2 was written in Python)

antiparser: fuzz testing and fault injection API

TAQF, (The Art of Fuzzing) including ProxyFuzz, a man-in-the-middle non-
deterministic network fuzzer

untidy: general purpose XML fuzzer

Powerfuzzer: highly automated and fully customizable web fuzzer (HTTP
protocol based application fuzzer)

SMUDGE

binary-zone.com Cited [5] 80

Fuzzing Tools — Cont.

Mistress: probe file formats on the fly and protocols with malformed
data, based on pre-defined patterns
Fuzzbox: multi-codec media fuzzer

Forensic Fuzzing Tools: generate fuzzed files, fuzzed file systems, and file
systems containing fuzzed files in order to test the robustness of forensics
tools and examination systems

Windows IPC Fuzzing Tools: tools used to fuzz applications that use
Windows Interprocess Communication mechanisms

WSBang: perform automated security testing of SOAP based web services

Construct: library for parsing and building of data structures (binary or
textual). Define your data structures in a declarative manner

fuzzer.py (feliam): simple fuzzer by Felipe Andres Manzano
Fusil: Python library used to write fuzzing programs

binary-zone.com Cited [5] 81

Web Tools

Requests: elegant and simple HTTP library, built for human beings
HTTPie: human-friendly cURL-like command line HTTP client
ProxMon: processes proxy logs and reports discovered issues

WSMap: find web service endpoints and discovery files

Twill: browse the Web from a command-line interface. Supports
automated Web testing

Ghost.py: webkit web client written in Python

Windmill: web testing tool designed to let you painlessly automate and
debug your web application

binary-zone.com Cited [5] 82

Web Tools — Cont.

FunkLoad: functional and load web tester

spynner: Programmatic web browsing module for Python with Javascript/
AJAX support

python-spidermonkey: bridge to the Mozilla SpiderMonkey JavaScript
engine; allows for the evaluation and calling of Javascript scripts and
functions

mitmproxy: SSL-capable, intercepting HTTP proxy. Console interface
allows traffic flows to be inspected and edited on the fly

pathod / pathoc: pathological daemon/client for tormenting HTTP clients
and servers

binary-zone.com Cited [5] 83

Forensic Tools

Volatility: extract digital artifacts from volatile memory
(RAM) samples

LibForensics: library for developing digital forensics
applications

TrIDLib, identify file types from their binary signatures. Now
includes Python binding

aft: Android forensic toolkit

Lots of others which you’ll see them very soon ;)

binary-zone.com Cited [5] 84

Malware Analysis Tools

pyew: command line hexadecimal editor and disassembler, mainly to
analyze malware

Exefilter: filter file formats in e-mails, web pages or files. Detects many
common file formats and can remove active content

pyClamAV: add virus detection capabilities to your Python software

jsunpack-n, generic JavaScript unpacker: emulates browser functionality
to detect exploits that target browser and browser plug-in vulnerabilities

vara-python: identify and classify malware samples

phoneyc: pure Python honeyclient implementation

binary-zone.com Cited [5]

85

PDF Tools

Didier Stevens' PDF tools: analyse, identify and create PDF
files (includes PDFiD, pdf-parser and make-pdf and mPDF)

Opaf: Open PDF Analysis Framework. Converts PDF to an
XML tree that can be analyzed and modified.

Origapy: Python wrapper for the Origami Ruby module which
sanitizes PDF files

pyPDF: pure Python PDF toolkit: extract info, spilt, merge,
crop, encrypt, decrypt...

PDFMiner: extract text from PDF files

python-poppler-gt4: Python binding for the Poppler PDF
library, including Qt4 support

binary-zone.com Cited [5] 86

Lab Time!

DIY ©

This lab is a Do It Yourself (DY) Lab that must done at home:
(1] Create a TCP ACK Port Scanner

2] Create a TCP Replay Tool

2] Create a UDP Ping Tool

'] Create a Sniffer that filters based on user input

5] Create a tool for HTTP Basic Authentication
Login

Bruteforce

[6] Create a basic Honeypot that logs all activity to a text file

binary-zone.com

SUMMARY

Discussed Why Learn Python

Discussed What is Python Good for?

Explained Python Basics

Some Quick Python Tips and Tricks

Python User Input

Howto Create Functions using Python

Working with Modules, and the Python Common Used Modules
Howto use the Python SYS and OS Modules

Using Python to work with Networks: Sockets, pcapy, etc
Using Python to work with the Web (urllib, urllib2)

Using Python to create simple Encoders

Howto use Python for Exploit Development

Craft your own packets using Scapy

Python tools for penetration testers

binary-zone.com

Citation of Used Work

[1] Keith Dixon, @Tazdrumm3r, http://tazdrumm3r.wordpress.com/
[2] Python Comic, http://xkcd.com/353/,

[3] Live Packet Capture in Python with pcapy, http://snipplr.com/view/3579/
live-packet-capture-in-python-with-pcapy/

[4] How to use urllib2 in Python, http://www.pythonforbeginners.com/
python-on-the-web/how-to-use-urllib2-in-python/

[5] Python tools for penetration testers,
http://www.dirk-loss.de/python-tools.htm

binary-zone.com

References

[1] Coding for Penetration Testers Book,

[2] Violent Python Book,

[3] Scapy Documentation, http://www.secdev.org/projects/scapy/doc/

[4] Python, http://www.python.org/

[5] Python Infosec tools, http://www.dirk-loss.de/python-tools.htm

[6] Grow Your Own Forensic Tools: A Taxonomy of Python Libraries Helpful for
Forensic Analysis,
http://www.sans.org/reading room/whitepapers/incident/grow-forensic-tools-
taxonomy-python-libraries-helpful-forensic-analysis 33453

[7] Python Docs, http://docs.python.org/

[8] Python Tutorial, http://www.tutorialspoint.com/python/index.htm

[9] pcapy, _ _
http://corelabs.coresecurity.com/index.php?

module=Wiki&action=view&type=tool&name=Pcapy

[10] Basic Authentication Authentication with Python,
http://www.voidspace.org.uk/python/articles/authentication.shtml

[11] Justin Searle, Python Basics for Web App Pentesters, InGuardians Inc

binary-zone.com

