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Memory Map 

•  One of the primary 
responsibilities of the 
BIOS is to program the 
memory map 

•  Many devices, in order 
to be useful, require 
their interfaces be 
extended to memory 

•  Also this is how the 
BIOS can ensure 
information about the 
way it set up the 
system is passed to 
the operating system at 
the time of handoff  
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4 “Basic” Ranges in System Memory 

1.  High Memory Range: Memory above 4GB (called Top of Upper 
Usable DRAM). Used for memory mapping and recoverable memory 
(system memory that overlaps with the PCI range)  

–  TOM (Top of Upper Memory): size of physical memory 
2.  PCI Memory Address Range: Used for memory-mapped IO (TPM, 

APIC, Flash, PCI Express, devices on chipset, etc.) 
3.  Main Memory Address Range: Addressable memory from TOLUD 

(Top of Low Usable DRAM) down to 1 MB 
4.  Compatible Memory space: 1 MB and below 
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Memory Map 

•  But on startup the processor is 
only aware of one memory 
range as we’ve seen 
–  Often called the Boot Block, it 

contains the entry vector and 
uncompressed BIOS code 

•  The system automatically 
maps the top 16 MB of 
memory to the flash bios 
–  Non-negotiable, does not 

matter if your system has < 4 
GB of memory, the system 
never actually accesses that 
memory.  Rather, it is 
mapped to the flash device. 

•  The rest of system memory 
needs to be configured by the 
BIOS 
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Hardware Block Diagram 

•  On the Mobile 4-Series Chipset, the BIOS (executed by the CPU), 
configures the MCHBAR in the DRAM Controller 

•  FEDA_0000h (on an E6400 with 4GB RAM for example) 
•  MCHBAR is now added to the memory map 
•  So how does this actually occur? 

FFFF_FFFFh 

0000_0000h 

FEDA_0000h 

Offset	
   Name	
   Value	
  

48h MCHBAR FEDA0000h 

DRAM	
  Controller	
   B0:D0:F0	
  

Chipset	
  

Offset	
   Name	
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60h PCIEXBAR F8000000h 
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