
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

Memory	
 Map	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

Memory Map

•  One of the primary
responsibilities of the
BIOS is to program the
memory map

•  Many devices, in order
to be useful, require
their interfaces be
extended to memory

•  Also this is how the
BIOS can ensure
information about the
way it set up the
system is passed to
the operating system at
the time of handoff

3	

4 “Basic” Ranges in System Memory

1.  High Memory Range: Memory above 4GB (called Top of Upper
Usable DRAM). Used for memory mapping and recoverable memory
(system memory that overlaps with the PCI range)

–  TOM (Top of Upper Memory): size of physical memory
2.  PCI Memory Address Range: Used for memory-mapped IO (TPM,

APIC, Flash, PCI Express, devices on chipset, etc.)
3.  Main Memory Address Range: Addressable memory from TOLUD

(Top of Low Usable DRAM) down to 1 MB
4.  Compatible Memory space: 1 MB and below

TOUUD	

TOLUD	

TOM	

4	

Memory Map

•  But on startup the processor is
only aware of one memory
range as we’ve seen
–  Often called the Boot Block, it

contains the entry vector and
uncompressed BIOS code

•  The system automatically
maps the top 16 MB of
memory to the flash bios
–  Non-negotiable, does not

matter if your system has < 4
GB of memory, the system
never actually accesses that
memory. Rather, it is
mapped to the flash device.

•  The rest of system memory
needs to be configured by the
BIOS

TOM	

FFFF_0000	

5	

Hardware Block Diagram

•  On the Mobile 4-Series Chipset, the BIOS (executed by the CPU),
configures the MCHBAR in the DRAM Controller

•  FEDA_0000h (on an E6400 with 4GB RAM for example)
•  MCHBAR is now added to the memory map
•  So how does this actually occur?

FFFF_FFFFh

0000_0000h

FEDA_0000h

Offset	
 Name	
 Value	

48h MCHBAR FEDA0000h

DRAM	
 Controller	
 B0:D0:F0	

Chipset	

Offset	
 Name	
 Value	

60h PCIEXBAR F8000000h

DRAM	
 Controller	
 B0:D0:F0	

F800_0000h

6	

