Advanced x86:

BIOS and System Management Mode Internals
SPI Flash Programming

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

SPI note:

 We're not really going to care about low level
SPI protocol details

 We're just going to care about the way that
it’s exposed to the BIOS, so that we can
understand the BIOS’s view of the world, and
therefore interpret its actions accordingly

SPI (Serial Peripheral Interface) Flash

DMI -
(To (G)MCH)

. | id
.;&DNLE%%JS% ports | Power Management | I nte p rOVI eS a
Dual EHCI Controller)
programmable
PYPIr— ® System Management .
e Lo eo interface to the SPI

PCI Express* x1 ﬂ h d o
| Intel® Gigabi \ GLCI SPI Flash | — a S eVI Ce
gabit Ethernet Phy I: PCI Bus

Ao Gorome o || L — System BIOS lives here
[oo o M — Other stuff does too

.n,oztmu Firmware Hub * Copernicus progra mS
this interface to dump
a binary of the SPI flash

Intel 10 Controller Hub 10 Datasheet, page 31

How you should think of reading &
writing the flash chip

All you see/need to care about

RAM
CPU (“SPIBAR” = {PV+ X
MMIO to ICH or PCH)

Behind the scenes
SPI
ICH or PCH Flash Chip

RCBA holds RCRB &
RCRB + X = SPIBAR s\
— (for X = 0x3800 on all newer systems, but not old ones)
SPIBAR + Y = flash programming registers

An app can choose either “Hardware

Sequencing” (meaning the hardware picks the actual
SPI commands that get sent for read/write) or
Software Sequencing (meaning you pick the actual SPI
commands)

— For simplicity of discussion, we’ll be referring to only those
operations/details pertaining to Hardware Sequencing

» Software Sequencing just offers a little more fine-grain control

All SPI registers in the following slides are from:
http://www.intel.com/content/www/us/en/io/io-controller-hub-10-family-datasheet.html

Since | didn’t have anywhere better to

21.1

Table 21-1.

put this...

Serial Peripheral Interface Memory Mapped
Configuration Registers

The SPI Host Interface registers are memory-mapped in the RCRB (Root Complex
Register Block) Chipset Register Space with a base address (SPIBAR) of 3800h and are
located within the range of 3800h to 39FFh. The address for RCRB are in the RCBA
Register (see Section 12.1.40). The individual registers are then accessible at SPIBAR
+ Offset as indicated in the following table.

These memory mapped registers must be accessed in byte, word, or DWord quantities.

Serial Peripheral Interface (SPI) Register Address Map
(SPI Memory Mapped Configuration Registers) (Sheet 1 of 2)

Spolzg; + Mnemonic Register Name Default
00h-03h BFPR BIOS Flash Primary Region 00000000h
04h-05h HSFS Hardware Sequencing Flash Status 0000h
06h-07h HSFC Hardware Sequencing Flash Control 0000h
08h-0Bh FADDR Flash Address 00000000h
0Ch-0Fh - Reserved 00000000h
10h-13h FDATAO Flash Data 0 00000000h
14h-4Fh FDATAN Flash Data N 00000000h

SPI Programming Flash Address
Register

» Specifies starting address of the SPI |/O cycle
— Flash address, not a system RAM address

— Valid range is O to <size of flash chip — 1>

FADDR—Flash Address Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 08h Attribute: R/W
Default Value: 00000000h Size: 32 bits
Bit Description

31:25 | Reserved

Flash Linear Address (FLA) — R/W. The FLA is the starting byte linear address of a
SPI Read or Write cycle or an address within a Block for the Block Erase command. The
24:0 | Flash Linear Address must fall within a region for which BIOS has access permissions.
Hardware must convert the FLA into a Flash Physical Address (FPA) before running this
cycle on the SPI bus.

SPI Programming Data Registers

e Contains the data we just read from the SPI flash (up to 64
bytes), or data we’re about to write to the flash chip

 R/W (since it can be used to specify data to write to flash)

FDATAO—Flash Data 0 Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 10h Attribute: R/W
Default Value: 00000000N Size: 32 bits

FDATAN—Flash Data [N] Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 14h Attribute: R/W

SPIBAR + 4Ch
Default Value: 00000000N Size: 32 bits

S

Pl Programming Control Register

HSFC—Hardware Sequencing Flash Control Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 06h Attribute: R/W, R/WS
Default Value: 0000h Size: 16 bits

2:1

FLASH Cycle (FCYCLE) — R/W. This field defines the Flash SPI cycle type generated
to the FLASH when the FGO bit is set as defined below:

00 = Read (1 up to 4 bytes by setting FDBC)
01 = Reserved

10 = Write (1 up to 4 bytes by setting FDBC)
11 = Block Erase

e Set the type to read (bits 2:1 == 00b)

SPI Programming Control Register

* [|nitiates the SPI 1/0 cycle
— Used by programming app (Copernicus)
* Defines the number of bits to read (or write) in the I/O cycle

HSFC—Hardware Sequencing Flash Control Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 06h Attribute: R/W, R/WS
Default Value: 0000h Size: 16 bits

Flash Data Byte Count (FDBC) — R/W. This field specifies the number of bytes to
shift in or out during the data portion of the SPI cycle. The contents of this register are
13:8 | Os based with Ob representing 1 byte and 111111b representing 64 bytes. The number
of bytes transferred is the value of this field plus 1.

This field is ignored for the Block Erase command.

Flash Cycle Go (FGO) — R/W/S. A write to this register with a 1 in this bit initiates a
request to the Flash SPI Arbiter to start a cycle. This register is cleared by hardware
when the cycle is granted by the SPI arbiter to run the cycle on the SPI bus. When the
cycle is complete, the FDONE bit is set.

Software is forbidden to write to any register in the HSFLCTL register between the FGO
bit getting set and the FDONE bit being cleared. Any attempt to violate this rule will be
ignored by hardware.

Hardware allows other bits in this register to be programmed for the same transaction
when writing this bit to 1. This saves an additional memory write.

This bit always returns 0 on reads.

SPl Programming Status Register

* Indicates that an SPI 1/O cycle is in progress

* Set automatically by hardware, nothing we
need to really care much about

HSFS—Hardware Sequencing Flash Status Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 04h Attribute: RO, R/WC, R/W
Default Value: 0000h Size: 16 bits

SPI Cycle In Progress (SCIP)— RO. Hardware sets this bit when software sets the
Flash Cycle Go (FGO) bit in the Hardware Sequencing Flash Control register. This bit
remains set until the cycle completes on the SPI interface. Hardware automatically sets
and clears this bit so that software can determine when read data is valid and/or when
5 it is safe to begin programming the next command. Software must only program the
next command when this bit is 0.

NOTE: This field is only applicable when in Descriptor mode and Hardware sequencing
is being used.

SPl Programming Status Register 2

* Indicates the SPI I/0O cycle has completed

* Software must poll on this bit to determine when
the hardware is done reading/writing data

HSFS—Hardware Sequencing Flash Status Register
(SPI Memory Mapped Configuration Registers)

Memory Address: SPIBAR + 04h Attribute: RO, R/WC, R/W
Default Value: 0000h Size: 16 bits

Flash Cycle Done (FDONE) — R/W/C. The ICH sets this bit to 1 when the SPI Cycle
completes after software previously set the FGO bit. This bit remains asserted until
cleared by software writing a 1 or hardware reset due to a global reset or host partition
reset in an Intel ME enabled system. When this bit is set and the SPI SMI# Enable bit is
0 set, an internal signal is asserted to the SMI# generation block. Software must make
sure this bit is cleared prior to enabling the SPI SMI# assertion for a new programmed

access.

NOTE: This field is only applicable when in Descriptor mode and Hardware sequencing
is being used.

Reading the flash chip

e BIOS reading software sets up the location it
wants to read (as part of reading the entire
chip) and how many bytes to read

Reading the flash chip

* BIOS reading software says to start the read

Reading the flash chip

* Cyclein progress

* We need to poll on FDONE, waiting for it to be
setto 1l

Reading the flash chip

* Once the cycle is done (FDONE=1) we can do
read the FDATA registers

Reading the flash chip

* BIOS reading software will get the contents
out of the FDATA register(s) and store to
memory and/or disk

Lab: RYOFC!

(Read Your Own Flash Chip!)

We're going to be cool and manually program the flash registers in RWE to read
the reset vector from our flash chip

DISCLAIMER! DISCLAIMER! DISCLAIMER!

Don’t follow along unless you’re super careful! You could accidentally brick your
system! :D

| am not responsible if you brick your system (or your enemies’ :P)
DISCLAIMER! DISCLAIMER! DISCLAIMER!

1TOO LIKETO
- LIVE

\'

. —

DANGEROUSLY

memegenerator.net

Register Access:
SPI| Base Address Register (SPIBAR)

LPC Device B0O:D31:FO
oreet [nome v || [N A
FOh RCBA FED18000 = = [

@ memory

« SPI extends |ts Base Address Registers (BARS) o

SPIBAR is offset from the Root Complex Reglstefr \Block
(RCRB)@

* The offset from RCRB is chipset-dependent, but will be
listed in the SPI section of the datasheet

20

Lab: Locate SPIBAR
o=

Serial Peripheral Interface Memory Mapped ‘
Configuration Registers &

Th ost Interface registers are memory-mapped in the RCRB (Root Com
egister Block) Chipset Register Space with a base address (SPIBAR) of 3800h and a
located within the range of 3800h to 39FFh. The address for RCRB can be found in

RCBA Register see Section 13.1.35. The individual registers are then accessible at
IBAR + Offset as indicated in Table 22-1.

registers must be accessed in byte, word quantities.

Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge v
-« Per your datasheet, the SPI host
0 03020100 07060504 0BOAOD908 0FQEODOC . . .
00 29178086 02100107 06010003 00800000 | nte rfa ce reg |S‘te) (S P I B AR) IS
10 00000000 00000000 00000000 00000000
20 00000000 00000000 00000000 02331028 IOC ated at a n Offs et fro m RC RB x
30 00000000 000000ED 00000000 00000000
40 00001001 00000080 00001081 00000010 . . .
50 00000000 00000000 00000000 00000000 d I n th e M O b I I e 4_Se rl eS Ch I pset O n
60 8A8B8AS83 000000D1 808B838A 000000F8 .
70 00000000 00000000 00000000 00000000 O u r I a b I a pto p] % I S
80 3C040000 007C0901 00000000 003C0C81 . S o
a0 00000000 00000000 00000000 00000000 Iocated at_
A0 00000E20 00800239 004A1C2B 40000300
& e e weee e |« RCRB + 3800h = FED1_B800h
DO 00000000 00000000 0000F080 00000008
EO 100C0009 03C40200 00000004 00000000
FO < FED18001 > 00000000 00030F86 00000000 \

21

Back to “Fun things to do in SMM”!

From https://cansecwest.com/slides/2014/Copernicus2-SENTER _the-Dragon-CSW.pptx 23

Attack 1 — Manipulate Copernicus output

*" From within the OS, targeted hooks into Copernicus code

" From within the OS with “DDefy” [20] rootkit style hooks into file
writing routines

" From within the HD controller firmware [21][22][23]

" From within the OS with a network packet filter driver
" From within the NIC firmware [24][25]

= Etc. Lots more options

© 2013 The MITRE Corporation. All rights reserved. MITRE

Attack 2 — A new generic attack.

It is possible for SMM to be notified when SPI reads or writes occur
An attacker who controls the BIOS controls the setup of SMM

In this way a BIOS-infecting attacker can perform a SMM MitM
attack against those who would try to read the BIOS to integrity
check it

We call our SMM MitM “Smite’em, the Stealthy”

25

Eye of the dragon - FSMIE - hw sequencing

= This is what allows an attacker in SMM to know when someone
is trying to access the flash chip

HSFC—Hardware Sequencing Flash Control Register
(SPI Memory Mapped Configuration Registers)

Memory Address:SPIBAR + 06h Attribute: R/W, R/WS
Default Value: 0000h Size: 16 bits

This register is only applicable when SPI device is in descriptor mode.

Bit Description

Flash SPI SMI# Enable (FSMIE) — R/W. When set to 1, the SPI asserts an SMI#
request whenever the Flash Cycle Done bit is 1.

15

" The Flash Cycle Done bit is set to 1 after every read and write

MITRE

© 2013 The MITRE Corporation. All rights reserved.

26

Reading the flash chip in the presence of
Smite'em

= BIOS reading software sets up the location it wants to read (as
part of reading the entire chip) and how many bytes to read

© 2013 The MITRE Corporation. All rights reserved. MITRE

27

Reading the flash chip in the presence of
Smite'em

= BIOS reading software says to start the read

© 2013 The MITRE Corporation. All rights reserved. MITRE

28

Reading the flash chip in the presence of
Smite'em

= Cycle in progress

© 2013 The MITRE Corporation. All rights reserved. MITRE

29

Reading the flash chip in the presence of
Smite'em

= Once the cycle is done, and the data is available for reading, if
the FSMIE = 1, an SMl is triggered, giving Smite'em the first look

© 2013 The MITRE Corporation. All rights reserved. MITRE

30

Reading the flash chip in the presence of
Smite'em

= Smite'em can change any data that would reveal its presence to
the original benign data

© 2013 The MITRE Corporation. All rights reserved. MITRE

31

Reading the flash chip in the presence of
Smite'em

= BIOS reading software will be misled!

© 2013 The MITRE Corporation. All rights reserved. MITRE

32

Think it can't happen?

" Flashrom 0.9.7 source

REGREAD16(ICHS REG_HSFC);
~HSFC_FCYCLE; /* set read operation */
~HSFC FDBC; /* clear byte count */

(((block len - 1) << HSFC FDBC OFF) & HSFC FDBC);
HSFC _FGO; /* start */

= If you don't account for hw/sw sequencing's FSMIE bit (as no
previous software did), you will just lose and provide false
assurances of a lack of BIOS compromise

MITRE

© 2014 The MITRE Corporation. All rights reserved.

33

What you don't know can bite you

" The basic solution would seem to be just for querying tools to
set FSMIE = 0 before trying to read

= Multiple ways for an adversary to counter
— Kernel agent continuously setting FSMIE = 1
= So you just clear it and check if it's getting re-set, and if so...?

— VMX interception of MMIO to SPI space, falsifying that you
successfully cleared FSMIE

= But then if they're using VMX too, they can also just directly forge
FDATA

— Target your security software specifically

= |f your tool is good enough to detect attacker, he's incentivized to go
after you specifically

© 2013 The MITRE Corporation. All rights reserved. MITRE

Terror at 35,000 feet (high level overview)
Another attack...

= Let's assume that Smite'em wants to pick another generic, low-
effort way to avoid detection (i.e. doesn't want to use VMX until
absolutely necessary)

= Smite'em recruits a Dragon Knight avatar

— Could be kernel-based code or a DMA device and independent of
CPU

= Avatar polls SPI configuration registers to detect if an SPI cycle
Is In progress

= Upon detecting an SPI cycle in progress, the avatar triggers an
SMI

= Smite’em running in SMM has exclusive access to the CPU, and
can stall until the cycle completes and then replace the data
read from flash before Copernicus can read it

MITRE

35

Reading the flash chip in the presence of
Smite'em

= Copernicus sets up the location it wants to read (as part of
reading the entire chip) and how many bytes to read

© 2013 The MITRE Corporation. All rights reserved. MITRE

36

Reading the flash chip in the presence of
Smite'em

= GOz'\

" Then says go

© 2013 The MITRE Corporation. All rights reserved. MITRE

37

Reading the flash chip in the presence of
Smite'em

= Copernicus sets up the location it wants to read (as part of
reading the entire chip) and how many

© 2013 The MITRE Corporation. All rights reserved. MITRE

38

Reading the flash chip in the presence of
Smite'em

" Once it sees the data, it tries not to race with Copernicus, but
instead stops itself and Copernicus by signaling Smite'em with
an SMI

© 2013 The MITRE Corporation. All rights reserved. MITRE

39

Reading the flash chip in the presence of
Smite'em

= Smite'em then cleans up as usual

© 2013 The MITRE Corporation. All rights reserved. MITRE

Better luck next time?

* We then implemented a basic “Copernicus 2” that used Intel TXT to try
and defeat this

— We care about trustworthy detection tools. It's no good to have detection

tools if your attacker can easily bypass them and give you a false sense of trust
that your system is clean

e But we know that we have to start somewhere

 We thought it would work because the manuals implied that TXT
automatically suppresses SMis until they’re explicitly turned back on
— It turned out that it does on *old* hardware, but newer hardware turns on

SMIs automatically, so our TXT code is back to being vulnerable to SMM
subversion until STMs are available

* That’s part of why we want STMs so much
_—
— T
* Ouronly consolation is that Copernicus 2 *does* take OS level attackers

off the table...But really if we’re trying to detect BIOS level attackers, we
need to counter SMM in order for it to matter

Coming soon?(ever?)

* “Copernicus 3” would take our existing
research on “timing-based attestation” and
port it into TXT-land

* Unfortunately since | said that idea while | was
at MITRE, even though | didn’t implement it,
probably MITRE owns the idea and | can’t do it

without their permission/cooperation :-/
e So for today, your only option is...

Trustworthy BIOS
malware
detection!

(note: doesn’t
measure SMM :))

